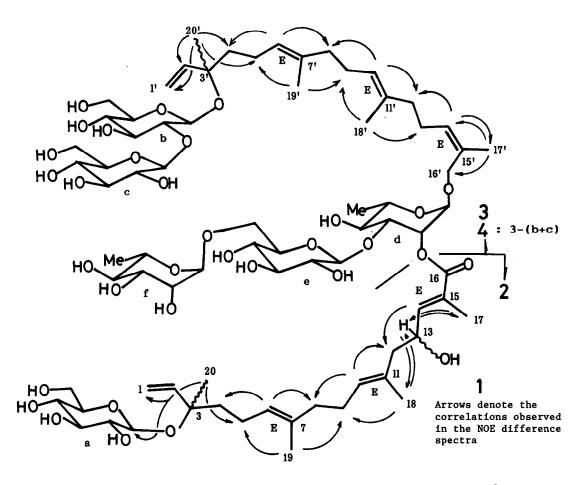
A NOVEL ACYCLIC DITERPENE GLYCOSIDE, CAPSIANSIDE A, FROM <u>CAPSICUM ANNUUM</u> VAR. <u>FASCICULATUM</u>


Shoji Yahara, Yukio Izumitani and Toshihiro Nohara* Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862, Japan

Summary---A novel acyclic diterpene glycoside was obtained from the part of the polar ingredients in the fresh fruits of <u>Capsicum</u> <u>annuum</u> L. var. <u>fasciculatum</u> I<u>rish</u>.

The fruit of <u>Capsicum annuum L. var. fasciculatum Irish</u> is one of the congener crude drugs of Capsici Fructus, which is one of the most important spices and has been used as a medicine for external application. We have now obtained a novel acyclic diterpene glycoside, designated as capsianside A (1), from the fresh fruits in 0.03 % yield. This paper deals with the structure characterization of 1.

Capsianside A (1), colorless amorphous powder, $[\alpha]_D -25.1^{\circ 1}$, showed absorption bands at 1716 and 1659 cm⁻¹ in the IR spectrum, and a peak due to $(M-H)^-$ at m/z 1563 along with some other fragment ion peaks at m/z 1083, 497 and 479 in the negative FAB-MS. Its ¹³C-NMR spectrum (Table I) exhibited total seventy-six carbon signals, in which an α,β -unsaturated ester group (δ 127.5, 146.5 and 168.5) and six anomeric carbons of sugars [δ 98.3 (d, J=155 Hz), 99.0 (d, J=168 Hz), 99.7 (d, J=159 Hz), 101.5 (d, J=168 Hz), 102.8 (d, J=159 Hz) and 107.0 (d, J=159 Hz)] were implied. The ¹H-NMR spectrum of 1 suggested the presence of eight <u>tert</u>. methyl groups [δ 1.59 (12H, s), 1.64 (3H, s), 1.70 (3H, s), 1.91 (3H, s) and 1.99 (3H, s)]. Acid hydrolysis of 1 afforded L-rhamnose and D-glucose as sugar component. While alkaline treatment of 1 gave two hydrolyzed products, 2 and 3.

Compound 2, colorless amorphous powder, $[\alpha]_D$ -8.2°, negative FAB-MS(m/z): 497 (M-H)⁻, showed signals due to four methyl groups [δ 1.59 (6H, s), 1.82 (3H, s) and 2.14 (3H, d, J=1.1 Hz)], six olefinic protons [δ 5.23 (1H, d, J=11.0 Hz), 5.24 (1H, t, J=8.0 Hz), 5.39 (1H, dd, J=1.1, 17.6 Hz), 5.46 (1H, t, J=6.6 Hz), 6.30 (1H, dd, J=11.0, 17.6 Hz) and 7.42 (1H, d, J=7.3 Hz)], a methine proton [δ 5.00 (1H, m)] bearing oxygen atom, five pairs of methylene protons [δ 1.80-2.70 (10H, m)] and one mole of the β -D-glucopyranosyl residue [anomeric proton: δ 4.98 (1H, d, J=8.0 Hz)] in the ¹H-NMR spectrum. Moreover, the ¹³C-NMR spectrum (Table I) indicated the presence of an α , β -unsaturated carboxylic acid [δ 131.4 (s), 144.5 (d) and 171.2 (s)], three double bonds [δ 114.8 (t), 125.2 (d), 127.9 (d), 132.0 (s), 134.9 (s) and 144.5 (d)], two carbons [δ 67.5 (d) and 80.0 (s)] carrying oxygen atom, five methylene carbons (δ 22.9, 27.1, 39.9, 42.1 and

48.0), four methyl carbons (δ 13.4, 16.1, 16.9 and 23.5) and the β -D-glucopyranosyl moiety (δ 99.8, 75.3, 78.8, 71.9, 78.1 and 62.9, C_1-C_6). The full assignments of all of the protons and carbons in 2 were acchieved by the detailed analyses of the 2D ($^{1}H^{-1}H$, $^{1}H^{-13}C$ and $^{1}H^{-13}C$ long range²) NMR spectra and NOE difference spectroscopy experiments. Namely, the NMR studies disclosed the connectivities of all of the double bonds, carboxyl-, methyl-, methyleneand hydroxyl-groups, and the geometric configurations of the double bonds. Therefore, the structure of 2 was represented as $3-O-\beta-D$ -glucopyranosyl -13-hydroxygeranyl-linalool 16-oic acid.

On the other hand, compound 3, colorless amorphous powder, $[\alpha]_{D}^{-37.6^{\circ}}$, showed a peak of $(M-H)^{-}$ at m/z 1083 in the negative FAB-MS. The H-NMRspectrum of 3 showed signals due to six methyl groups [δ 1.58 (s), 1.64 (s), 1.65 (d, J=6.0 Hz), 1.69 (s), 1.68 (d, J=6.6 Hz) and 1.92 (s)], an ABX type signal attributable to the vinyl group [δ 5.07 (d, J=11.0 Hz), 5.28 (d, J=17.6 Hz) and 6.59 (dd, J=11.0, 17.6 Hz)], three olefinic protons (δ 5.24, 5.36 and 5.47) each splitted into triplet, and five anomeric protons [δ 4.73 (d, J=8.1 Hz), 4.98 (d, J=7.7 Hz), 5.22 (d, J=7.3 Hz), 5.36 (br s) and 5.61 (br s)]. In conjunction with the evidence of 2D ($^{1}H-^{1}H$, $^{1}H-^{13}C$) NMR (Table I) spectra, 3 was supposed

Table I. 13 C-NMR Assignments (δ) of Casianside A (1), 2, 3 and 4 in pyridine-d₅

	1	2		1	3	4
C-1	114.8	114.8	C-1'	115.0	115.0	111.2
2	144.4	144.5	2'	144.5	144.5	147.0
3	80.0	80.0	3'	80.6	80.6	72.4
4	42.1	42.1	4'	42.6	42.6	42.3
5	22.9	22.9	5'	23.0	23.0	23.0
5 6	125.1	125.2	6'	125.1	125.2	125.1
7	135.0	134.9	ž'	135.1	135.1	134.8
8	39.8	39.9	8'	40.0	40.0	40.0
9	27.0	27.1	9'	26.4	26.4	26.4
10	127.8	127.9	10'	125.2	125.2	125.4
11	131.9	132.0	11'	134.6	134.6	134.6
12	47.4	48.0	12'	40.1	40.1	40.0
		67.5	13'	27.1	27.1	27.0
13	67.2		14'	130.0	130.0	129.9
14	146.5	144.5				
15	127.5	131.4	15'	132.0	132.1	132.1
16	168.5	171.2	16'	66.2	66.8	66.8
17	13.0	13.4	17'	21.9	21.9	21.9
18	16.8	16.9	18'	16.0	16.0	16.1
19	16.1	16.1	19'	16.2	16.2	16.1
20	23.5	23.5	20'	23.0	23.0	28.3
lc-l	99.7	99.8	Glc-l	98.3	98.3	
(a) 2	75.3	75.3	(b) 2	84.6	84.7	
3	78.7	78.8	3	77.7	77.7	
4	71.8	71.9	4	71.4	71.4	
5	78.2	78.1	5	78.0	77.9	
6	62.9	62.9	6	62.6	62.6	
			Glc-1	107.0	106.9	
			(c) 2	76.4	76.6	
			3	77.8	77.8	
			4	70.3	71.4	
			5	78.6	78.5	
			6	62.6	62.9	
			Rha-l	99.0	102.7	102.7
			(đ) 2	75.3	72.6	72.6
			3	78.0	79.2	79.3
			4	74.0	73.8	73.8
			5	70.2	70.5	70.5
			6	18.5	18.4	18.4
			Glc-l	102.8	102.7	102.7
			(e) 2	74.9	75.0	75.0
			3	77.2	77.2	76.6
			4	71.5	72.5	72.5
			5	75.3	75.4	75.4
			6	67.1	67.2	67.2
			Rha-1	101.5	101.9	101.9
			(f) 2	72.3	72.1	72.1
			3	72.6	72.9	72.6
			4	74.3	73.9	73.9
			5	69.7	69.7	69.7
			6	18.6	18.6	18.6

to be analogous to 2. Compound 3 was then hydrolyzed with naringinase to afford compound 4, an amorphous powder, $[\alpha]_D -37.3^\circ$. In the same way as 2, PRFT ¹³C-NMR and NOE difference spectroscopy revealed 4 to be 16-hydroxygeranyl -linalool 16-O- α -L-rhamnopyranosyl-(1-6)- β -D-glucopyranosyl-(1-3)- α -L-rhamnopyranoside. A comparative study³) of the ¹³C-NMR spectra of 3 and 4 showed that the additional β -sophorosyl residue attached to the C₃-OH in 4 to form 3. Thus, the structure of 1 was represented as a combined form of 2 and 3. Comparison of the ¹³C-NMR spectra of 1 and 3 showed that the chemical shifts at the C-1, C-2 and C-3 of the inner rhamnosyl moiety (d) in 1 were respectively shifted by -3.7, +2.7 and -1.2 ppm, indicating the carboxyl group linked to the C₂-OH of the rhamnopyranosyl residue.

Consequently, the structure of capsianside A (1) was established as shown in the formula. The peracetate of 1 showed peaks at m/z 273 (rha·3Ac), 331 (glc·4Ac), 561 [(rha+glc)·6Ac], 619 [(glc+glc)·7Ac] and 749 [(rha+glc+rha)·7Ac] in the EI-MS, which supported the above sugar linkage.

The novel compound such as capsianside A (1) has been first found as the major component in the polar portion of <u>C. annuum</u> var. <u>fasciculatum</u> and it has also become apparent that the related compounds are abundantly distributed in the same genus, <u>e.g.</u>, <u>Capsicum annuum</u> L. and <u>C. annuum</u> L. var. <u>angulosum Mill</u>.

Studies on their ingredients are now in progress.

Acknowledgement : We are grateful to Prof. T. Komori of the Kyushu University for negative FAB-MS measurements

References and Notes

- 1) Optical rotations were measured in MeOH.
- 2) Long range couplings were observed between C-3 and 20-H₃, 1-H₂, 2-H; C-4 and 20-H₃; C-6 and 19-H₃; C-8 and 19-H₃; C-10 and 18-H₃; C-12 and 18-H₃; C-13 and 12-H₂; C-14 and 17-H₃; C-15 and 17-H₃; C-16 and 17-H₃, and C-17 and 14-H.
- 3) R.Kasai, M.Suzuo, J.Asakawa and O.Tanaka, Tetrahedron Lett., 1977, 175; K.Tori, S.Seo, Y.Yoshimura, H.Arita and Y.Tomita, <u>ibid.</u>, 1977, 179.

(Received in Japan 7 January 1988)